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that exercise programs probably slightly improve 
function, may reduce pain, and probably slightly 
reduce global patient assessment of disease activity, 
when compared with no intervention in axSpA.34 
In a randomized, assessor blinded, controlled trial  
of 100 patients, high intensity exercise for three 
months significantly reduced pain, stiffness, fatigue, 
and inflammation in axSpA patients.35 Despite the 
impressive results reported in this trial, aggressive 
exercise programs in patients with axSpA may be 
counterproductive based on the evidence of MRI 
imaging findings of osteitis in healthy athletes 
mentioned above,28 reports that patients with 

ankylosing spondylitis engaged in jobs requiring 
dynamic flexibility (repeated bending, stretching, 
twisting, and reaching) and whole body vibration 
demonstrated more functional limitation and 
radiographic damage,36 37 and the finding of 
enthesophytes (abnormal bony projections at the 
attachment of a tendon or ligament at sites) at focal 
sites of high biomechanical stress in the feet of 
animal models, mimicking the mechanical stress in 
the lower extremities of axSpA patients.38 Studies 
utilizing computed tomography scanning with 
computer modeling in patients with longstanding 
ankylosing spondylitis have shown a pattern 
of syndesmophyte formation in the spine that 
corresponds to previously demonstrated and known 
areas of heightened mechanical stress in the human 
spinal column.39 To date, however, no definitive 
link has been established between exercise and the 
development of syndesmophytes in the spine.

NSAIDs are recommended for early treatment 
of axSpA.40-42 High to moderate quality evidence 
indicates that NSAIDs are efficacious in the treatment 
of axSpA, and moderate to low quality evidence 
indicates harms may not differ from placebo in the 
short term. Continuous use of NSAIDs may reduce 
radiographic spinal progression shown in some but 
not all studies, but this requires confirmation.43 
NSAIDs are more effective if prescribed early in 
disease course and, in one trial, 35% of patients 
exhibited a significant response within four 
weeks.44 The preference of one agent over another 
has not been demonstrated in clinical trials but 
low level evidence indicates that NSAIDs can 
augment clinical treatment response when added 
to biologic agents.40 Chronic use of glucocorticoids 
is best avoided because the high doses required for 
response are associated with significant long term 
morbidity.45 Disease modifying anti-rheumatic drugs 
(DMARDs) (sulfasalazine, hydroxychloroquine) are 
not effective for the treatment of axial disease (very 
low to moderate quality evidence).46 Methotrexate 
combination with anti-TNF agents did not improve 
therapeutic response although it may be considered 
in patients on infliximab to lessen the development 
of anti-drug antibodies.40

Anti-TNF agents (adalimumab, certolizumab 
etanercept, golimumab, infliximab) are approved 
for treatment of radiographic axSpA in Europe and 
the US. Moderate to high level quality evidence 
supports a clinically important benefit of these 
agents compared with placebo for improvement in 
disease activity and function, and achieving partial 
remission in ankylosing spondylitis in the short 
term.47 The primary outcome measure in many axSpA 
trials is the ASAS40, a composite measure defined as 
a 40% improvement in three of four domains that 
include global and pain assessments, and function 
and stiffness evaluations.48 Randomized controlled 
trials (RCTs) in patients with nr axSpA reported 
significant improvement in the ASAS 40 (in weeks) 
recorded as patients (% ASAS40: % active drug, 
% placebo, P-value). The trials demonstrated the 
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Fig 2 | Imaging findings in axSpA. (2a) Enthesophytes present on the hip (arrows) and 
the pelvic rim (arrowheads) represent ossification of entheses. (2b) Large paramarginal 
bulky syndesmophytes characteristic of spinal involvement in psoriatic arthritis. 
(2c) Syndesmophytes are marginal vertical shafts of bone that begin at the sites of 
enthesial attachment (arrow). (2d) Radiographic axSpA. The sclerotic changes are 
bilateral and at the tip of the arrow are more advanced changes of erosion, sclerosis, 
and pseudo widening of the SI joint. (2e) MRI changes of bone marrow edema (arrows) 
in a patient with inflammatory back pain and HLAB27+but a normal plain radiograph of 
the SIJ (nr axSpA)
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superiority of adalimumab % ASAS40, W12 (185, 
36, 15, P<0.001), etanercept % ASAS40, W12 
(225, 33.3, 14.7, P<0.001), and certolizumab % 
ASAS40 major improvement, W52 (317, 47.2, 7.0, 
P<0.0001).49-51 The suppression of abnormal MRI 
signals was also observed following treatment with 
these agents in some patients. Elevated C reactive 
protein, short symptom duration (or young age), and 
active MRI inflammation are the best predictors for 
a good response to TNF blockers in patients with nr 
axSpA.52 Caveats regarding the use of biologics in 
patients with nr axSpA have been raised based on 
possible overdiagnosis, incomplete pain assessment, 
and favorable long term outcomes. MRI assessments 
in this population have low sensitivity and specificity, 
structural progression is rare, and centralized pain is 
more prevalent in this group of patients than in those 
with radiographic axSpA.53 54

The ability of NSAIDs or anti-TNF agents to 
inhibit radiographic progression in axSpA is not 
established. Radiographic progression is monitored 
with the modified Stoke AS Spine Score (mSASSS) 
that was designed to track syndesmophyte growth 
and radiographic progression.55 The reliability, 
sensitivity to change, and high inter- reader 
variability of this outcome measure have raised 
concerns regarding its clinical validity coupled 
with a poor correlation between decline in function 
and progressive elevation of the mSASSS score.56 
Clinical trials focused on the ability of NSAIDS 
to limit structural progression in axSpA yield 
conflicting data and, at this time, additional trials 
to address this question are in progress.57 Initial 
studies comparing radiographic progression in 
patients on anti-TNF agents with historic cohorts 
not exposed to biologics did not show significant 
differences in mSASSS scores at two years.58 59 
Two observational cohorts, however, did find 
that anti-TNF agents can block progression, 
particularly if these drugs were taken for more 
than two years. In the first observational study 
that applied propensity scoring, a 50% reduction 
in the mSASSS score was observed in patients on 
anti-TNF agents, particularly patients who received 
early and continuous therapy.32 In the second 
study, decreased progression was observed in those 
patients who received anti-TNF agents before the 
monitored radiographic interval: duration of time 
on an anti-TNF agent was also noted to be a variable 
associated with less progression on radiography.60 
A systematic review and meta-analysis found that 
anti-TNF agents may exert a protective effective 
on spinal progression if employed for ≥four years 
of treatment, but these authors strongly urged the 
need for additional studies to formally address this 
important question.61

The treatment landscape of axSpA was dominated 
by anti-TNF agents from 2003 to 2016. The 
discovery of the IL-23/IL-17 pathway in 2005, 
however, revealed new treatment targets along 
with molecules and signaling pathways that proved 
pivotal in the pathophysiology of not only axSpA, 

but psoriasis and psoriatic arthritis as well.62 Over a 
relatively short period of time, new agents that target 
molecules in this pathway were developed and have 
proven effective for a range of immune mediated 
inflammatory disorders.

Targeting the IL23/IL-17 pathway in axSpA
Interleukin 23 is a pleiotropic cytokine critical 
for the differentiation, survival, and expansion 
of conventional (αβ) T cells and unconventional 
(γδ) T cells, which regulate a plethora of immune 
responses.63 64 The modulation of IL-17 producing 
cells by IL-23 is commonly known as the IL-23/IL-
17 axis in inflammation. However, despite this close 
relationship and interdependence of expression 
between these two cytokines, some research revealed 
that IL-17 can be produced by many cell types 
independently of IL-23. Similarly, IL-23 has important 
immune functions independent of T cells and/or IL-
17 producing cells. Hence our understanding of the 
IL-23/IL-17 axis in inflammation is evolving.

IL-23 is a heterodimeric cytokine, composed of a 
p19 and a p40 subunit. It binds IL-23R and IL-12Rβ1 
(referred to as IL-23R complex), the latter being 
shared with IL-12,65 and IL-12 is also a heterodimeric 
cytokine, which consists of a p35 and p40 subunit. 
Ustekinumab is a fully human IgGk1 monoclonal 
antibody designed to inhibit the p40 subunit which is 
shared among IL-23 and IL-12 cytokines. Therefore, 
this antibody does not exert selective inhibition of 
the IL-12 or IL-23 pathways. Thus, new molecules 
were developed to directly inhibit the IL-23p19 
subunit and these agents include tildrakizumab, 
risankizumab, mirikizumab, and guselkumab. 
Several of these inhibitors are in clinical trials and 
results in SpA patients are discussed below. IL-23 
engagement of the human IL-23R complex66 recruits 
Janus kinases, Jak2, and Tyk2, directly to IL-23R 
and IL-12Rβ1, respectively, and induces T helper 17 
(Th17) specific cell differentiation, as evidenced by 
increased gene expression of IL-17A.66-68 Jak1 and 
Jak3 are the remaining two family members of the 
Jak family and can be activated by other pathways 
including IL-15, IL-21, IL-2,4, and gp130 receptor 
family (IL-6) and IL-22. The benefits of the Jak-
STAT signaling pathway inhibition by filgotinib, 
upadacitinib, tofacitinib, and BMS 986-165 are 
currently being investigated in SpA.

IL-17A is a member of the IL-17 family of cytokines 
(IL-17, IL-17B, IL-17C, IL-17D, IL-17E, IL-17F69) 
(fig 3). IL-17A is produced as a 35-kDa homodimer 
or heterodimer with IL-17F by αβ T cells, innate 
lymphoid cells including γδ T cells, innate-like 
lymphoid cells, mast cells, and neutrophils.70 71 
Direct inhibition of IL-17 is a major undertaking 
with multiple targets to consider including IL-17A 
(secukinumab, ixekizumab), and dual inhibitors 
of IL-17A and IL-17F such as bimekizumab. IL-17 
binds IL-17R (IL-17RA/IL-17RC), which is expressed 
by various cells such as monocytes, lymphocytes, 
lymphoid tissue inducer cells, epithelial cells, 
synoviocytes, fibroblasts, and keratinocytes.72  73 
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Brodalumab binds to the IL-17 receptor and is 
approved for the treatment of psoriasis.74 A phase 
III trial in psoriatic arthritis was suspended because 
of concerns about major side effects including 
depression and suicidal behavior.75

Despite the critical importance of this pathway, 
the structure of IL-23 in complex with its IL-
23 receptor was only recently determined.76 
Surprisingly, this study showed that upon binding 
to IL-23R this interaction partially restructures 
the IL-23p19 subunit of IL-23. This observation 
may account for the diversified and unpredictable 
signaling properties of this cytokine.77 The presence 
of multi-protein assemblies and/or co-receptors 
at the cell surface remains to be investigated.78 79 
Some evidence also highlighted interactions of IL-
23 with immunoreceptors in human peripheral 
blood mononuclear cells, suggesting the multiple 
binding possibilities of IL-23:IL-23R signaling via 
protein assemblies.80 These novel interactions 
suggest that IL-23 signaling is more diversified than 
previously appreciated and thus can involve multiple 
transducers and effectors to activate multiple 
signaling pathways, as reviewed.81

Additionally, careful consideration should be given 
to the role of IL-23 in Th17 cell modulation, because 
Th17 cells can also secrete other factors besides IL-
17A such as TNF, IFN-γ, RANKL, and IL-22, which 
further diversify the molecular landscape of IL-23/
IL-17 signaling. Thus, the different “varieties” of 
Th17 cells described in the literature may account 

for the propagation of pathology observed in axSpA 
patients.82

Finally, despite many attempts to elucidate the 
molecular mechanisms that govern pathogenicity 
in axSpA as well as psoriatic arthritis, a host of 
critical questions remain unanswered. Despite the 
inherent limitations in recapitulating the human 
disease, experimental animal models provide 
unique insights regarding IL-23 pathobiology. For 
example, IL-23 overexpression induces immediate 
activation of myeloid cells within the bone marrow, 
resulting in synovitis and erosive polyarthritis.83 It 
was subsequently reported that at later time points, 
IL-23 induces enthesitis (inflammation at the sites 
of attachments of tendons, ligaments, and joint 
capsules to bone), reported to arise by the IL-23 
activation of enthesial CD4-CD8-T resident cells.84 
However, other studies showed that enthesitis can 
occur in the absence of T and B cells via the activation 
of stromal cells.85 These studies were aligned with 
previous observations that T lymphocytes are 
not required for the spontaneous development of 
enthesial ossification, leading to marginal ankylosis 
in experimental mice.70 73 Collectively, these data 
suggest that multiple pathways may contribute to 
murine experimental axSpA pathology including 
CD4-, CD4+ T cells, and myeloid and stromal cells.

Some evidence that osteoclasts regulate the egress 
of neutrophils by excavating transcortical vessels 
(through the process of bone resorption) in both 
mouse and human bone transiting from the inner to 

ßßß

Fig 3 | Schematic presentation of the structure of the IL-23, IL-12, and IL-17 family of cytokines, their receptors, and the mechanism of their 
inhibition. The IL-17/STAT pathways are not illustrated for simplicity

 on 3 M
arch 2023 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.m
4447 on 4 January 2021. D

ow
nloaded from

 

http://www.bmj.com/


State of the Art REVIEW

the bmj | BMJ 2021;372:m4447 | doi: 10.1136/bmj.m4447� 7

the outer bone72 deepens our understanding of how 
IL-23 induced myeloid activation promotes systemic 
and local musculoskeletal inflammation. These 
vessels provide a direct conduit for neutrophils 
and monocytes to move from the bone marrow to 
adjacent joints or to the peripheral circulation. This 
concept is relevant because neutrophil accumulation 
is involved not only in enthesitis86 but also in new 
bone formation87 and skin inflammation88 associated 
with the IL-23/IL-17 axis. Taken together, animal 
models have been extremely informative in providing 
insights into the effects of the IL23-IL-17 pathway on 
synovitis, enthesitis, and bone remodeling observed 
in axSpA.

The discovery of the IL-23/17 pathway and new targets 
for therapy
The efficacy of the IL-17 blockade in radiographic 
axSpA was demonstrated in two phase III RCT 
clinical trials. Both secukimumab, % ASAS40, 
W16 (371, 42, 13, P<0.001)89 and ixekizumab, % 
ASAS40, W16 (341, 48, 18, P<0.0001)90 showed 
efficacy for treatment of ankylosing spondylitis with 
a similar response magnitude observed with anti-
TNF agents. The effect of secukinumab on radiogra
phic progression (syndesmophyte formation) was 
examined in a phase III RCT: ΔmSASSS, W104 (253, 
0.31 ±1.94, 0.54 ±2.45, P=NS). The time point of two 
years is quite early to assess structural outcomes 
and further longitudinal analyses are planned.91 
Data on the ability of ixekizumab to inhibit 
structural progression is not available. Patients 
who had previous exposure to anti-TNF agents also 
demonstrated a higher response than patients on 
placebo.92 93 Some studies in patients with nr axSpA 
showed that the agents ixeikizumab, % ASAS40, 
W52 (303, 30, 13, P=0.009),94 and secukinumab, 
% ASAS40, W16 (555, 41.5, 29.2, P<0.05),95 show 
similar levels of efficacy to patients with radiographic 
axSpA. The most recent treatment recommendations 
suggest a switch to an anti-IL-17 agent only after a 
primary anti-TNF inhibitor non-response.40

It was expected, based on the mechanism of 
action and the central contribution of IL-23 to axial 
disease in animal models of spondylitis discussed 
above, that inhibition of this cytokine would also 
be an effective strategy. In support of this view was 
the finding that patients with ankylosing spondylitis 
responded to ustekinumab in a small open label 
study96 but a phase III RCT trial failed to show a 

significant effect on relief of inflammation or pain in 
radiographic axSpA and was terminated.97 Moreover, 
a dose ranging (18 mg, 90 mg, 180 mg) phase III RCT 
trial targeting IL-23 in axSpA with risankizumab 
also proved to be ineffective % ASAS40, W12 (159, 
20.5, 20.5, 15, 17.5, P=NS).98 The marked lack of 
response in both of these trials was unexpected and 
directly challenged the IL-23/17 paradigm of SpA 
pathogenesis.

Mechanistic insights into the lack of efficacy of IL-23 
blockade in axSpA
The unresponsiveness of axSpA patients to IL-23 
antibody therapy was unexpected and triggered a 
reappraisal of the postulated mechanisms of action 
that were based on in vitro data and preclinical 
models outlined above. A key point to emphasize is 
that Th17 cells may arise by IL-23 dependent and 
independent pathways, and they demonstrate a 
great deal of functional plasticity (maintenance of 
homeostasis, pathologic, and regulatory functions) 
which is highly dependent on local environmental 
cues. Moreover, many types of different cells (γδ T 
cells, innate lymphocyte type 3 cells, and mucosal 
associated invariant T cells) produce IL-17.82 With 
these points in mind, several explanations for 
the inefficacy of IL-23 blockade in axSpA can be 
envisioned (box 1).

Key effector cells in the SIJ or spine may release 
IL-17 independent of IL-23. Human soft tissues and 
perienthesial bone harvested at the time of spine 
surgery from non-axSpA patients showed that γδ T 
cells from these tissues released IL-17 in the absence 
of IL-23R expression.99 However, these observations 
contradict data that claim the initiator mechanism to 
be dependent on IL-23R+ enthesial T cells.84 Whether 
studies in non-axSpA tissues are informative 
regarding mechanisms in diseased tissues remains 
to be determined.

Interactions of mesenchymal and immune 
cells promote synovial inflammation in axSpA.100 
Uncoupling of IL-23 and IL-17 may be tissue specific. 
Indeed, in vitro studies show that mesenchymal 
cells from skin triggered IL-17 release via an IL-
23 dependent pathway, while mesenchymal cells 
from synovial tissues triggered IL-17 release by T 
activated cells independent of IL-23.101 102 A similar 
IL-17 response independent of IL-23R+ T cells was 
reported for adipose tissue derived mesenchymal 
stromal cells.103 These findings do not explain why 
IL-23 inhibition is effective in peripheral joints and 
not in the spine. Whether divergent pathways of IL-
17 production differentiate mesenchymal cells from 
peripheral joints and the spine awaits further study.

In classic histopathologic studies of inflamed 
tissues in the SIJ, François and colleagues demon
strated mild synovitis in early disease with limited 
synovial hyperplasia and infiltrates containing a low 
to moderate number of monocytes, and lymphocytes 
followed in the later stages by chondroid metaplasia 
and joint destruction.104 Monocytes and dendritic 
cells are the primary cells releasing IL-23 and, in the 

Box 1: Potential explanations for the non-responsiveness of axSpA patients to 
IL-23 inhibition
•	Enthesial cells, which promote inflammation in the axial skeleton, lack the IL-23R
•	Crosstalk between immune cells and mesenchymal or stromal cells does not require IL-23
•	Monocytes and dendritic cells, which release IL-23, are in low abundance in axial skeletal 

tissues
•	IL-23 is pivotal for the initiation of disease but not involved in ongoing inflammation
•	IL-23 and IL-23R complex diversify the signal to multiple effectors and transducers that are 

not inhibited by IL-23 and/or IL-23R blockade
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synovium of rheumatoid joints and in psoriatic skin, 
abundant monocytoid, dendritic cells are likely a 
rich source of IL-23.105 106 A low number of dendritic 
cells in axSpA tissues may provide an explanation 
for the lack of an IL-23 driven process, but a careful 
enumeration of these cells has not been performed.

Another viable explanation is that IL-17 producing 
cells arrive in the SIJ from other sites, having already 
been activated by IL-23. A gut joint axis has been 
proposed to link dysbiosis and gut infections with 
inflammatory spine disease, and supportive evidence 
for this can be found in animal models and magnetic 
resonance imaging.107 108 In this model, Th17 cells 
arise in the gut driven by either IL-23 dependent or 
independent mechanisms, circulate to the joint, and 
release IL-17. Activation of key effector cells in the 
gut, however, does not explain why IL-23 inhibition 
is ineffective in axSpA, given that such therapy 
should affect cells in both the intestine and the spine.

Interleukin-23 may be a pivotal cytokine in the 
initiation of the disease during the preclinical or 
early phase of axSpA but may not be required to 
maintain ongoing inflammation. Indeed, just this 
type of role was shown to be present for IL-23 in 
rheumatoid arthritis.109 The IL-23 axis and Th17 cells 
altered the glycosylation pattern of autoreactive IgG 
antibodies, rendering them pathogenic. It is unlikely 
that IL-23 is fostering the early stages of axSpA 
via this same mechanism but it is conceivable that 
alternative pathways are triggered by this cytokine 
as an early or initiating event. Another potential 
explanation supporting early involvement of IL-23 
in disease pathogenesis is that the IL-23 and the 
IL-23R complex can diversify the signal to multiple 
effectors and transducers that are not inhibited by IL-
23 and/or IL-23R blockade, as discussed previously. 
This signal diversification may activate inflammatory 
cells in the axial skeleton that lack IL-23R. It is also 
important to mention that trials of radiographic 
axSpA include patients with more advanced disease 
and not patients with new onset or early stage axial 
inflammation.

The therapeutic pipeline in axSpA
Despite the greater treatment options for patients 
with axSpA, several challenges remain. First, the 
efficacy observed with the IL-17 blockade is of 
similar magnitude to that observed with anti-TNF 
agents. Second, in spite of this degree of comparable 
efficacy among the therapeutic agents, about half 
the patients in clinical trials do not see a significant 
difference in primary outcomes. Third, oral options 
are not available, and lastly, high cost and difficulty 
with access to modern treatment regimens remain a 
challenging barrier for many patients.

Currently only biologics that inhibit IL-17 or TNF 
are approved, but several agents with novel modes of 
action are under investigation. Bimekizumab (a dual 
inhibitor of both IL-17A and IL-17F) was shown to be 
effective in ankylosing spondylitis in a phase II trial 
and a phase III study is in progress.110 Inhibitors of 
the Jak-STAT pathways have also been investigated 

in phase II axSpA trials. Several agents inhibit 
specific Jak-STAT pathways (fig 4). Inhibition of Jak 
1 may interfere with interferon α, β, and γ signaling 
and decreased IL-6 and IL-22 with potential to alter 
Th1 and Th17 differentiation and bone remodeling 
in axSpA.112 113 Furthermore, diminished IL-7 
signaling in response to Jak 3 inhibition may block 
differentiation and function of innate lymphoid cells, 
important effectors in this disorder.114 Tofacitinib 
blocks Jak 1, 2, 3 and demonstrated efficacy in 
a phase II study.115 Upadacitinib and filgotinib 
inhibit Jak 1 and they also demonstrated efficacy for 
ankylosing spondylitis in phase II studies, and phase 
III trials are anticipated or under way for all three of 
these agents.116 117 Agents that target Tyk 2, which 
is involved in IL-23/IL-17 signaling, may be effective 
for this disease although, as previously discussed, 
the validity of IL-23 as a target in axial disease has 
been challenged.118-120 Since pain is a significant 
component of ankylosing spondylitis, agents that 
target associated comorbidities such as depression, 
centralized pain, and sleep disorders may prove to be 
effective for overall disease activity and for improving 
function, particularly when administered with an 
agent that targets the inflammatory components of 
this disorder.120 121

Emerging treatments
Several placebo controlled RCTs are under way to 
investigate the efficacy and safety of novel agents 
in radiographic and non-radiographic axSpA 
(table 1). Phase III RCT trials are under way to 
examine the efficacy and safety of bimekizumab, 
an antibody that blocks IL-17A and F isoforms in 
axSpA. Subcutaneous secukinumab is approved for 
the treatment of ankylosing spondylitis, but an RCT 
is recruiting patients to examine if intravenously 
administered secukinumab is an effective and well 
tolerated treatment in axSpA. The efficacy and 
safety of namilumab, an agent that blocks GM-CSF, 
was examined in a phase 2b proof of concept study. 
Five separate RCTs are under way or about to begin 
to determine the efficacy and safety of tofacitinib, 
upadacitinib, and filgotinib in axSpA.

Guidelines
Three separate international guidelines for the 
management of axSpA were published between 
2016 and 2020. The 2016 update of the ASAS-
EULAR Management Recommendations for Axial 
SpA was developed with AGREE II122 123 methodology 
to formulate consensus around five overarching 
principles and 13 treatment recommendations.41 
The 2019 Update of the American College of 
Rheumatology/Spondylitis Association of America/
Spondyloarthritis Research and Treatment Net
work Recommendations for the Treatment of 
Ankylosing Spondylitis and Non-radiographic Axial 
Spondyloarthritis Update Recommendations from 
2015 used GRADE methodology124 125 to obtain 
consensus on five groups of recommendations 
pertaining to four different axSpA patient subgroups 
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and the fifth on disease activity assessment and 
imaging.40 The 2018 APLAR Axial Spondyloarthritis 
Treatment Recommendations were also developed 
with GRADE methodology to produce 14 recom
mendations based on evidence summaries and 
consensus.42 High level evidence was available for 
the use of NSAIDs and exercise, starting a biologic 
DMARD in patients with active disease despite 
conventional therapy, and avoidance of conventional 
synthetic DMARDs for the treatment of axial disease 
in all three documents.

Conclusions
Advances in the diagnosis and treatment of axSpA 
have unfolded at a rapid pace over the past 20 
years. This period was punctuated with a new 
classification of disease, which expanded the 
patient population at risk and provided new insights 
regarding disease course and new opportunities for 
earlier intervention. The revision in the classification 
criteria was accompanied by the discovery of the IL-

23/IL-17 pathway which is located at the epicenter 
of inflammation in axSpA. This pathway yielded a 
number of potential targets (IL-17, IL-23) expanding 
the treatment options for patients with this group 
of disorders. Agents that block IL-17A are highly 
effective for axSpA, with treatment responses that are 
of similar magnitude to those observed with anti-TNF 
agents. The inability of the IL-23 blockade to block 
axial inflammation was unexpected and generated 
a range of possibilities to explain the divergence 
of response in the axial skeleton in contrast to the 
peripheral joints. Several new therapeutic options 
are currently under investigation, including agents 
that block both IL17A and F isoforms, and oral 
medications that target the Jak-STAT pathways. 
Despite the progress, significant challenges remain. 
Treatment response is still far from ideal for many 
patients and we lack the biomarkers to identify 
patients with chronic back pain who are at increased 
risk to progress to axial spondyloarthritis and to 
predict which medication is most appropriate for 

γ

Fig 4 | Selectivity of Jak inhibitors. Specific cytokines signal through different Jak kinases. Ps-psoriasis, PsA-psoriatic arthritis, RA-rheumatoid 
arthritis (Revised from O’Shea J et al Nat Rev Rheum 2019; 15:75)111

Table 1 | Emerging agents for the treatment of axSpA
Agent Target Indication Enrollment Status Trial ID
Bimekizumab IL17, A, F nr axSpA/AS 240/300 R/R NCT03928704/NCT03928743
Secukinumab (IV) IL-17A axSpA 500 R NCT04156620
Namilumab GM-CSF axSpA 42 C NCT03622658
Tofacitinib Jak1, 2, 3 Ankylosing spondylitis 270 A NCT03502616
Upadacitinib Jak 1 axSpA 690 R NCT04169373
Filgotinib Jak 1 Ankylosing spondylitis 

naïve/exposed
408/576 New/new NCT0448370/NCT0443687

R=recruiting; C=completed; A=active; New=not recruiting yet; GM-CSF=granulocyte macrophage colony stimulating factor; naïve/exposed refers to prior 
treatment with a biologic disease modifying agent
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an individual patient. Another persistent barrier 
is the marked delay in diagnosis that typifies the 
experience for many of our patients. Certainly, 
education targeted at practitioners in primary care, 
physiotherapists, physiatrists, and spine specialists 
may help in decreasing the lag between disease 
onset and diagnosis, but the interventions that will 
meet with success for this vexing problem are likely 
to vary from region to region. Finally, the advance in 
technologies that reveal cell subsets and pathways in 
tissues at the single cell level will no doubt uncover 
novel targets and enable the development of a new 
generation of targeted biologics and oral small 
molecules to improve response to therapy in patients 
with axSpA.
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